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[1] Ultra-low-frequency (ULF) field line resonances can be used to infer the mass density
along magnetospheric magnetic field lines. By specifying how mass density is
distributed along the magnetic field (usually a power law as a function of distance from the
Earth) and a dipole magnetic field geometry, the MHD standing wave equation can be
analytically solved and mass density inferred from observed field line eigenfrequencies.
However, the geometry of the Earth’s magnetic field can deviate significantly from a dipole,
even at relatively low L shells and on the dayside magnetosphere. This study investigates
the importance of including a realistic magnetic field geometry when computing plasma
mass density from observed field line eigenfrequencies. A generalized version of the
toroidal modeMHD standing wave equation is solved using the Tsyganenko (2002a, 2002b)
empirical magnetic field model (T01). The results are compared to those found using a
dipole. We find that assuming a dipole magnetic field geometry results in an overestimation
of mass density. The overestimation is larger for more disturbed levels of geomagnetic
activity. Our results have important implications for the inference of heavy ions in the
magnetosphere. Namely, an increase in heavy ion concentration as a result of enhanced
geomagnetic activity will be exaggerated unless the proper magnetic field geometry is taken
into account when calculating mass density from field line eigenfrequencies.
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1. Introduction

[2] Observations of ultra-low-frequency (ULF) field line
resonances (FLRs) have been used for decades to infer the
mass density along magnetospheric field lines [e.g.,
Troitskaya and Gul’elmi, 1967; Takahashi and McPherron,
1982; Menk et al., 1999; Denton et al., 2001]. The earliest
researchers were able to use numerical integration to solve
the MHD standing wave equation by assuming a dipole
magnetic field geometry and a power law (as a function of
radial distance from the Earth) distribution of mass density
along field lines [e.g., Cummings et al., 1969; Orr and
Matthew, 1971]. A technique for numerically solving the
wave equation in an arbitrary magnetic field was first intro-
duced by Singer et al. [1981]. Since then, the Singer et al.
technique has been used for a variety of magnetic field
models and density distributions [Waters et al., 1996;
Hattingh and Sutcliffe, 1987; Denton et al., 2001; Rankin
and Tikhonchuk, 2001; Wanliss et al., 2002].
[3] The resonant frequencies (eigenfrequencies) of a

closed magnetic field line (i.e., one with both ends fixed
in the ionosphere) depend on its length, the strength of the
magnetic field, and the surrounding plasma mass density. In

the plasmasphere and plasmatrough regions, techniques
have been developed to measure these frequencies using
ground-based magnetometers [Baransky et al., 1985, 1989;
Waters et al., 1991, 1995]. Meridional chains of closely
spaced magnetometers can be used to determine field line
resonance frequency as a function of latitude [Pilipenko and
Federov, 1994; Kawano et al., 2002]. The main advantage
of ground magnetometer techniques is that they allow
continuous monitoring of FLRs, and thus plasma mass
density, whenever a resonance is present. However, care
must be used when inverting the measured frequencies to
obtain mass density because the process involves assump-
tions of the magnetic field geometry and the distribution of
mass along the field line. The purpose of this study is to
investigate the importance of a realistic magnetic field ge-
ometry versus the usual dipole field assumption when using
FLRs to determine plasma mass density.
[4] The inner magnetospheric magnetic field is often

approximated as a dipole. This is primarily because until re-
cently, no empirical model existed which attempted to ac-
curately describe the magnetic field there as a function of
solar wind conditions. The T01 model [Tsyganenko, 2002a,
2002b] was developed to specifically model the near-Earth
magnetosphere. The main improvement of T01 over earlier
magnetic field models with respect to modeling the inner
magnetosphere is that it includes a more accurate represen-
tation of the ring current. The T01 ring current takes into
account the axisymmetric component as well as a partial ring
current with field-aligned closure currents [Tsyganenko,
2002a]. Using the T01 model, Tsyganenko et al. [2003]
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showed that the dipole approximation can break down as
close as 3–4 RE on the nightside during the main phase of
large geomagnetic storms.
[5] The remainder of this paper is organized in the fol-

lowing way: In section 2 we compare the geometry of T01
field lines to a dipole as a function of local time, L shell, and
geomagnetic activity. In section 3 we use the Singer et al.
[1981] technique to solve the MHD standing wave equation
and determine the eigenfrequencies of inner magnetospheric
field lines. The conditions under which T01-determined
eigenfrequencies differ significantly from those determined
assuming a dipole are discussed. In section 4 the database of
dayside FLRs constructed by Berube et al. [2005] is utilized
to statistically compare plasma mass density computed from
the T01 model using the Singer et al. [1981] technique to
density computed assuming a dipole field. Conclusions are
presented in section 5.

2. Geometry of T01 Versus Dipole Field Lines

[6] The T01 model is an empirical model of the inner and
near magnetosphere (XGSM >= �15 RE). The inputs to the
model are the solar wind dynamic pressure Psw, the Dst
index, IMF By and Bz, Earth’s dipole tilt angle, and two
parameters G1 and G2. G1 and G2 are functions of the solar
wind speed Vsw and magnetic field strength and are used to
parameterize the cross-tail current (see Tsyganenko [2002b]
for a complete description of these terms). The Earth’s
internal field Bint can be calculated using the International
Geophysical Reference Field (IGRF) or a dipole. For a
given location inside the magnetosphere, the total field
strength is calculated as Btot = Bint + BT01.
[7] The geometry of T01 field lines can differ signifi-

cantly from that of a dipole depending on the inputs to the
model. The ‘‘partial’’ effects of variations of different input
parameters on the geometry ofmagnetosphericmagnetic field
lines were shown by Tsyganenko [2002b] (see Figure 11 of
that paper). Here we perform a similar calculation for field
lines typically passing through the plasmasphere.
[8] Figure 1a shows dipole field lines at noon MLT for

L = 2–6 plotted in black. The red lines are field lines
plotted from the same northern hemisphere footpoints
using T01 with average solar wind conditions as inputs
(Psw = 2 nPa, Dst = �20 nT, IMF Bz = IMF By = 0 nT).
For average conditions, there is not a significant difference
in the geometry of T01 field lines versus that of a dipole.
The equatorial crossing points of the T01 field lines only
differ by a fraction of a RE from the dipole field lines. The
difference in field line length between a dipole and T01 is
also quite small.
[9] Figure 1b shows the same dipole field lines as

Figure 1a plotted in black, and T01 field lines using the
same input parameters as 1a except with Dst = �100 nT.
For this case, there is a significant effect on both field line
length and equatorial crossing point beyond L = 4. The T01
field lines are stretched due to the effect of the ring current
included in the model. In Figure 1b, the dipole field line that
crosses the equator at 6 RE instead crosses it at 7.2 RE.
[10] Figure 1c shows the same dipole field lines as

Figure 1a plotted in black, and T01 field lines using the
same input parameters as 1a except with Psw increased to
20 nPa. The increase in dynamic pressure compresses the

Figure 1. Dipole field lines (black) and T01 model field
lines (red) plotted at noon MLT for (a) average solar wind
conditions, (b) Dst = �100 nT, and (c) Psw = 20 nPa.
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magnetosphere and field lines cross the equator closer to the
Earth than their dipole counterparts. For instance, the L = 6
field line crosses the equator at 5.5 RE.
[11] The solar wind dynamic pressure greatly influences

the strength of the magnetopause current system, whereas
Dst determines the strength of the ring current. Since the
ring current is located in the inner magnetosphere, the ge-
ometry of inner magnetospheric field lines is influenced
more by Dst than by Psw. Comparing Figures 1b and 1c, we
see that this is indeed the case. Therefore we expect that
changes in field line resonance frequency due to changes in
field line geometry will correlate best with Dst.
[12] Since T01 takes into account the interaction of the

solar wind with the magnetosphere as well as the local time
asymmetry of the ring current, we expect differences in the
geometry of dipole versus T01 field lines as a function of
local time. These differences are illustrated in Figure 2, which
shows the equatorial plane viewed from above the North
Pole. The concentric circles are at 2, 3, 4, 5, and 6 RE. The
black points represent the equatorial crossing points of the
L = 2, 3, 4, 5, and 6 field lines for each hour from 0600 to
1800 MLT, calculated using T01 with the same input param-
eters as Figure 1a. A local time effect is apparent beyond
3 RE. The T01 field line equatorial crossing points are farther
from the Earth than their dipole counterparts, with the largest
differences toward both dawn and dusk. Also, the figure
shows that near dawn (dusk), the local time where the field
line crosses the equator is earlier (later) than the local time
where the field line leaves the surface of the Earth, due to the
fact that field lines are swept antisunward by the solar wind.
[13] A quantitative analysis of the effects of varying solar

wind conditions and local time differences on field line
resonance frequencies and corresponding mass densities is
presented in section 3.

3. FLR Frequencies of T01 Versus Dipole Field
Lines

[14] The toroidal mode equation for standing waves in an
arbitrary magnetic field is given by Singer et al. [1981],

@2

@s2
x0 þ @

@s
ln h2aB
� �� � @

@s
x0 þ w2

V 2
A

x0 ¼ 0: ð1Þ

In equation (1), s is the coordinate representing the distance
along the field line (i.e., s = 0 is the foot of the field line), B is
the magnetic field, VA is the Alfvén speed, w is the angular
eigenfrequency, the scale factor ha is the distance to an
adjacent field line in the azimuthal direction, and x0 is the
linear displacement in the azimuthal direction divided by ha.
[15] We want to compare eigenfrequencies and mass den-

sities determined from solving the Singer et al. equation
using the T01 model to those determined assuming a dipole.
We assume a power law distribution of mass density along
field lines of the form

r ¼ req
Rmax

R

� �m

; ð2Þ

where r is the mass density, req is the density at the equator,
R is the distance from the center of the Earth to the location
along the field line, Rmax is the maximum distance, and m is
the power law dependence. Empirical studies of the field
line dependence of mass density in the plasmasphere have
found m (sometimes denoted by a) ranges from 0 to 6 [e.g.,
Takahashi and McPherron, 1982; Menk et al., 1999;
Gallagher et al., 2000]. Other recent studies have found
the density to be fairly constant along plasmaspheric field
lines over a wide range of latitudes around the equator,
suggesting a value of m close to zero [Goldstein et al., 2001;
Reinisch et al., 2001; Takahashi et al., 2004]. In fact, the
radial distance (R in the equation above) does not vary sig-
nificantly over a large portion of the field line surrounding
the equator. Thus the value of m chosen when computing
density from observed field line resonance frequencies
results in an uncertainty in density smaller than that asso-
ciated with the measured frequency. For instance, at L = 2.5,
the difference in the computed equatorial density between
choosing m = 0 and m = 3 from a frequency of 20 mHz is
16 percent, whereas the typical uncertainty in density that
arises from determining the frequency from the data is
around 25 percent [e.g., Berube et al., 2003]. We note that
there are situations when the assumption of a power law
distribution may not be appropriate, such as at very low
latitudes (L < 2) where a significant portion of the field line
is in the ionosphere. Techniques which do not assume a
functional dependence of density along field lines have been
developed [Price et al., 1999], but those techniques require
observations of several harmonic frequencies, which are
rarely seen in ground data. This study’s main focus is the
role magnetic topology plays in the determination of mass
density from observed field line resonance frequencies. Our
choice of a power law distribution of mass density along
field lines allows the results of this study to be compared
to other previous results where a power law was assumed.
The quantitative effects of choosing different functional
forms for the mass density dependence will be the topic of a
future study.
[16] The Alfvén speed in equation (1) depends on both

the magnetic field and mass density. Using the expression
for mass density from equation (2),

V 2
A ¼ B2

m0r
¼ B2

m0req

Rmax

R

� ��m

; ð3Þ

Figure 2. Equatorial crossing radii of T01 model field
lines with the same footpoints as dipole field lines for L =
2–6. The inputs to the model are the same as Figure 1a.

A08206 BERUBE ET AL.: FLRS IN A REALISTIC MAGNETIC FIELD

3 of 7

A08206



equation (1) becomes

@2
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x0 þ @
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The magnetic field B, radial distance R, and ha can all be
expressed in terms of the field line coordinate s. Identifying

P sð Þ ¼ @

@s
ln h2aB
� �� �

ð5Þ

and

Q sð Þ ¼
m0req
B2

Rmax

R

� �m

; ð6Þ

equation (4) can be written as

@2

@s2
x0 þ P sð Þ @

@s
x0 þ w2Q sð Þx0 ¼ 0: ð7Þ

The set of eigenvalues of equation (7) are the field line
eigenfrequencies squared. We can solve for w2 by providing
appropriate boundary conditions and numerically integrat-
ing along the field line. Since the field line is assumed to be
fixed at its ionospheric endpoints, the wave amplitude must
be zero there. Therefore we choose x0 = 0 there.
[17] For a given equatorial mass density, we solve for the

eigenfrequency using a simple shooting code. The field line
coordinate s, magnetic field strength B, and ha are deter-
mined using the T01 model. We start at one end of the field
line with an initial guess for w and solve for x0 at the other
end by numerically integrating equation (7) along the field
line using a fourth-order Runge-Kutta method. The value of
w is adjusted and the integration repeated until x0 at the other
end is within a specified tolerance. The code will solve for
the harmonic nearest to the initial guess. The process can be

repeated several times with different initial guesses to solve
for multiple harmonics.
[18] Assuming a mass density of 1 amu cm�3 everywhere

in the magnetosphere (i.e., a power law dependence with
m = 0), we calculated the fundamental harmonic frequency
for the L = 2–6 field lines for each hour from 0600 to
1800 magnetic local time using the T01 magnetic field
model and the average solar wind input parameters that
were used in Figure 1a. Figure 3 is a plot of the ratio of the
fundamental harmonic computed using T01 to the funda-
mental harmonic computed assuming a dipole magnetic
field (we use the notation fT01/fdip). The largest differences
are found near dawn and dusk, especially for field lines
beyond L = 4. Also note that the curves are not symmetric
about 1200 LT due to the fact that the ring current in the
T01 model includes a dawn-dusk asymmetry. The differ-
ences are not as significant below L = 4. Another important
feature of Figure 3 is that for all field lines, fT01 is smaller
than fdip. This means that assuming a dipole results in a
systematic overestimation of mass density, since frequency
and density are inversely proportional to one another.
[19] Under the dipole assumption, any change in the field

line resonance frequency can only be attributed to a change in
mass density along the field line, since the field line geometry
does not change. In reality, a changing resonance frequency
can be due to changing field line geometry, changing mass
density, or both. Figure 4 is a plot of contours of constant
fT01/fdip at noon MLT for L shells from 2 to 6 and Dst
from �200 nT to 50 nT. Again we have assumed a
constant mass density of 1 amu cm�3 everywhere in the
magnetosphere. The plot shows that at L shells as low asL= 4,
the eigenfrequency for a given density can be significantly
less than the expected eigenfrequency assuming a dipole
solely due to an increase in geomagnetic activity. This has
important implications for inferring plasma mass density
changes during geomagnetic storms. As an example, suppose
we observe the eigenfrequency for a particular field line
decrease during the main phase of a storm. Under the dipole

Figure 3. Ratio of the fundamental field line eigenfre-
quency determined using T01 to that found assuming a
dipole versus local time. The inputs to the model are the
same as Figure 1a.

Figure 4. Contours of fT01/fdip for L shells from 2 to 6.
The inputs to the model are the same as Figure 1a, except
Dst varies from 50 to �200 nT.
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assumption, the observed decrease in frequency can only be
explained by an increase in mass density along the field line.
Figure 4 shows that the decrease could partly be explained by
the fact that the field line geometry is also changing. The
important implication of this result is that in order to use field
line resonances to monitor plasma mass density dynamics,
field line geometry must be taken into account, even for field

lines inside the plasmasphere, where the dipole assumption is
commonly used during geomagnetic storms.

4. Mass Density Determined From Observed
Eigenfrequencies Using T01

[20] In the previous section, we assumed a density dis-
tribution and solved equation (7) for field line eigenfre-

Figure 5. Equatorial mass density computed assuming a dipole magnetic field versus the density
computed using the T01 model for six pairs of stations in the MEASURE array of ground
magnetometers. The blue line represents perfect agreement between a dipole and the model. The red
points are times when Dst < �50 nT.
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quencies. In practice, the frequencies are observed and we
want to determine the density. In that case, req and w

2 can be
swapped in equation (6) and equation (7), and equation (7)
can be solved for req using the same scheme described in
section 3.
[21] Berube et al. [2005] developed an empirical plasma-

spheric mass density model from approximately 5200 hours
of field line resonance frequencies measured using pairs of
stations from the MEASURE chain of magnetometers
(http://measure.igpp.ucla.edu). The array contains pairs of
stations with midpoints at L = 1.74, 1.99, 2.30, 2.57, 2.89,
and 3.12. Equatorial mass density was calculated assuming
a dipole magnetic field and a power law distribution of mass
density with m = 3.
[22] In order to compare mass density determined assum-

ing a dipole to that determined using T01, we solved equa-
tion (7) using the same database of FLRs as Berube et al.
[2005], for the same distribution of mass density as in that
study. Solar wind inputs to the T01 model were obtained
using NASA Space Physics Data Facility’s OMNIWEB
(http://omniweb.gsfc.nasa.gov) service. Figure 5 shows plots
comparing the density computed by Berube et al. [2005] to
density computed using T01 for the six station pairs. The
solid line represents perfect agreement between the two data
sets. The red points represent times with Dst < �50 nT.
[23] Figure 5 clearly shows that the dipole assumption re-

sults in an overestimation of mass density at all station pairs,
with the exception of a few points for the L = 3.12 pair. The
agreement between dipole and T01 densities is worse for
large values of Dst (<�50 nT) as shown by the red points.
The MEASURE data only extend to L = 3.12, but the large
amount of scatter present in the comparison for that pair
(bottom right panel of Figure 5) suggests that the difference
between dipole and T01-determined densities is much less
predictable at larger L, which is reasonable considering
the fact external conditions will have a larger effect on the
geometry of field lines which extend farther out into the
magnetosphere. Below L = 3, the difference between using a

dipole and T01 is almost negligible, except for large
densities and disturbed conditions.
[24] The uncertainty in determining field line eigenfre-

quencies using pairs of ground stations results in an uncer-
tainty in mass density of 25 percent or less [Berube et al.,
2003]. The difference in density between a dipole and T01
is often much greater than 25 percent. Figure 6 plots this
difference as a function of the level of geomagnetic activity.
The figure shows the percent difference in density between
a dipole and T01 for the six station pairs plotted versus Dst.
Even for moderately disturbed (Dst = �50 nT) geomagnetic
activity and field lines below L = 3, the difference can be
larger than the maximum uncertainty associated with deter-
mining the field line eigenfrequency. Such large differences
imply that the dipole assumption can lead to a significant
over estimation of mass density for these conditions, and the
change in field line geometry associated with changing geo-
magnetic conditions must be taken into account when det-
ermining mass density from FLRs in the plasmasphere.

5. Summary and Conclusions

[25] We have investigated the importance of choosing a
realistic magnetic field geometry in relation to the problem
of determining the mass density along magnetic field lines
from observed field line resonance frequencies. Using the
T01 magnetic field model, we have shown that the extent to
which field line eigenfrequencies depend on field line
geometry is significant. By assuming a constant plasma
mass density everywhere in the magnetosphere, effects on
field line eigenfrequencies due to local time and the level of
geomagnetic activity are apparent. A comparison of mass
density computed assuming a dipole versus the density
computed using T01 shows that the dipole assumption re-
sults in an overestimation of mass density. This overesti-
mation is larger for larger densities, L shells, and Dst.
[26] Mass density determined from FLRs can be useful

for inferring the presence of heavy ions in the magneto-
sphere when combined with measurements of electron
number density [e.g., Berube et al., 2005; Fraser et al.,
2005; Takahashi et al., 2004; Dent et al., 2003]. The ratio of
mass density to electron density gives the average ion mass.
An increase in average ion mass could imply an increase in
the number of heavy ions. The overestimation of mass den-
sity due to the dipole assumption found by the current study
implies an overestimation of heavy ion mass loading by
studies that use the FLR technique in general. This overes-
timation is greater during disturbed times. Our results
indicate that mass density determined from FLRs assuming
a dipole magnetic field will result in the inference of a
greater number of heavy ions than are actually present,
especially during disturbed times. A more detailed investi-
gation of plasma mass density and heavy ion dynamics
during geomagnetic storms using the new time-dependent
Tsyganenko magnetic field model [Tsyganenko and Sitnov,
2005] is the topic of a future study.
[27] It is important to consider the effects of field line ge-

ometry on FLRs, even in the inner magnetosphere (L � 3),
where the dipole assumption is often considered to be valid
even during storms. A realistic representation of the mag-
netospheric magnetic field is essential for accurately deter-
mining the mass density along magnetic field lines.

Figure 6. Percent difference between mass density com-
puted assuming a dipole and density computed using the
T01 plotted versus Dst for the six pairs of MEASURE sta-
tions used in this study.
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